AP CHEMISTRY MASTER EQUATION SHEET

Reaction Stoichiometry

$M=\frac{\text { moles solvent }}{\text { Lof solution }}$	0.10 Molarity, 0.10 M, or $[0.10]$ all mean the same thing.
$M_{1} V_{1}=M_{2} V_{2}$	This can be used as a shortcut during titrations when the acid to base mole ratio is 1:1. If the mole ratio is not $1: 1$, you must take this into account during your calculations.

Stoichiometry Conversions

Matter and Intermolecular Forces

$P V=n R T$	Ideal gas law. Gases behave most ideally at low pressure and high temperature.
$\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T$	Non-ideal gas law, accounts for volume taken up by gas particles and changes in pressure due to attraction between gas particles. Check the references section for a and b values.
$\begin{aligned} R & =8.31 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \\ R & =0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \\ R & =62.364 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \end{aligned}$	Gas law constants. Make sure units match when you choose which one to use.
$1 \mathrm{~atm}=760 \mathrm{mmHg}$ (or torr) $=101.3 \mathrm{kPa}$	Some useful unit conversions.
$P_{\text {total }}=P_{\text {gas } A}+P_{\text {gas B }}+P_{\text {gas } C}$	Partial pressures
$P_{\text {gas } A}=P_{\text {total }} \times \frac{\text { moles gas } A}{\text { total moles of gas }}$	The partial pressure of a gas is directly proportional to the mole fraction of the gas in the mixture.
$K={ }^{\circ} \mathrm{C}+273$	Conversion from Celsius to Kelvin. Most gas law equations require the Kelvin temperature.
$(K E)_{a v g}=\frac{3}{2} R T$	The average kinetic energy of a collection of gas particles is related to its temperature.
$K E_{\text {per molecule }}=\frac{1}{2} m v^{2}$	The kinetic energy of a single gas molecule is related to its temperature and mass.
$K E_{\text {gas particle }}=\frac{1}{2} m u_{r m s}^{2}$	This is a restatement of the previous equation. The $u_{r m s}^{2}$ represent the average molecular speed.
$u_{r m s}=\sqrt{\frac{3 R T}{M}}$	The average molecular speed of a gas particle depends on the temperature and mass.

$\frac{\text { Effusion rate for gas } 1}{\text { Effusion rate for gas } 2}=\frac{\sqrt{M_{2}}}{\sqrt{M_{1}}}$	The relative effusion rate of a gas is a ratio based on molar masses.
$R_{f}=\frac{\text { distance travelled by molecule }}{\text { distance travelled by solvent front }}$	The retention factor found during chromatography can be used to identify/ separate a mixture of compounds.
$\% T=T \times 100=\left(\frac{P}{P_{0}}\right) \times 100$	Percent transmittance is a ratio of the light that can pass through a sample to the total amount of light.
$A=-\log \left(\frac{P}{P_{0}}\right)=-\log (T)$	Absorbance is the negative log of transmittance.
$A=\varepsilon b c$	Beer's Law. A is absorbance, b is the path length (width of the cuvette, usually $1)$, and c is the concentration. The molar absorptivity coefficient (ε) is found from the slope of the graph of absorbance versus known concentrations.

Chemical Kinetics

$\text { Rate }=\frac{\Delta[A]}{\Delta t}$	Rate is the change in concentration of a species over time.
$\begin{aligned} \text { instan.rate } & =\text { slope of tangent line } \\ & =\frac{\text { rise }}{\text { run }} \end{aligned}$	In a graph of concentration of a species over time, the instantaneous rate is found using the slope of a line tangent to that point.
$k=A e^{-\frac{E_{a}}{R T}}$	Arrhenius equation, used to relate the rate law constant to the activation energy.
$\begin{gathered} \text { Rate }=k[A] \\ \operatorname{Ln}[A]=-k t+\operatorname{Ln}[A]_{0} \\ t_{1 / 2}=\frac{0.693}{k} \end{gathered}$	First order rate laws Linear slope of $\operatorname{Ln}[A]$ vs. t gives k
$\begin{gathered} \text { Rate }=k[A]^{2} \\ \frac{1}{[A]}=k t+\frac{1}{[A]_{0}} \\ t_{1 / 2}=\frac{1}{k[A]_{0}} \end{gathered}$	Second order rate laws Linear slope of $1 /[A]$ vs. t gives k
$\begin{gathered} \text { rate }=k \\ {[A]=-k t+[A]_{0}} \\ t_{1 / 2}=\frac{[A]_{0}}{2 k} \end{gathered}$	Zeroth order rate laws Linear slope of $[A]$ vs. t gives k
Rate Laws with Many Reactants $\begin{gathered} \text { Rate }=k \cdot[A]^{m} \cdot[B]^{n} \cdot[C]^{p} \\ \text { Rate }=k^{\prime} \cdot[A]^{m} \text { where } k^{\prime}=k \cdot[B]^{n} \cdot[C]^{p} \end{gathered}$	To determine a pseudo rate constant, conduct experiments where each reactant is limited by a large excess of the others, then monitor concentration. Create your rate law plots. The slope of the linear relationship indicates the order with respect to the limiting reactant and the pseudo rate constant. To get the entire raw law, you would repeat this until you knew the order with respect to each reactant.

Equilibrium

$\begin{gathered} K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \\ K_{p}=\frac{\left(P_{\text {gas } C}\right)^{c}\left(P_{\text {gas } D}\right)^{d}}{\left(P_{\text {gas } A}\right)^{a}\left(P_{\text {gas } B}\right)^{b}} \\ Q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \end{gathered}$	For a reaction: $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$ When $Q=K$, reaction is at equilibrium.
$K_{s p}=[A]^{a}[B]^{b}$	For the dissolving of an ionic compound: $\mathrm{A}_{\mathrm{a}} \mathrm{~B}_{\mathrm{b}}(\mathrm{~s}) \rightleftharpoons \mathrm{aA}^{+}(\mathrm{aq})+\mathrm{bB}^{-}(\mathrm{aq})$
$\begin{aligned} & K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[A^{-}\right]}{[H A]} \\ & K_{b}=\frac{\left[B H^{+}\right]\left[O H^{-}\right]}{[B]} \end{aligned}$	Where: $\begin{aligned} & \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\ & \mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \end{aligned}$
$K_{w}=1 \times 10^{-14}=K_{a} \times K_{b}$	You can use K_{w} (constant) and K_{a} or K_{b} to find the other.
$p K_{w}=p K_{a} \times p K_{b}$	Leads to $14=\mathrm{pH}+\mathrm{pOH}$
$\begin{aligned} & p K_{a}=-\log \left(K_{a}\right) \\ & p K_{b}=-\log \left(K_{b}\right) \end{aligned}$	The symbol p usually means "log of."
$\begin{aligned} p H & =-\log \left[H^{+}\right] \\ p O H & =-\log \left[O H^{-}\right] \end{aligned}$	Use these to find pH and pOH . Remember that for strong acids and bases, $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$is the same as the concentration of the acid or base. For weak acids and bases, you must use a RICE chart to find the concentration of $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$at equilibrium.
$p H=p K_{a}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right)$	In buffer systems (such as those that occur when a weak acid/base is titrated by a strong one) at the $1 / 2$ equivalence point, $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$.

$q=m c \Delta T$, for water, $\mathrm{C}=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$	If the system loses heat, this will have a negative value. If it gains heat, this will be positive. Think about the direction of the heat flow.
$w=-P \Delta V$	Work is the energy needed to move something against a force, for example lifting books from the ground to a shelf does work against gravity. The energy of a system changes due to work and energy transfer (such as heat). We focus on the work done by expanding (negative) or compression (positive) of gases.
$K E=\frac{1}{2} m v^{2}$	The kinetic energy of a particle is related to its mass and velocity. If a collection of small and larger particles are at the same temperature, they have the same average KE. Particles may move faster or slower (velocity) depending on mass.
$P E=\frac{k q_{1} q_{2}}{d}$	The potential energy between two charges is related to the size of the charge and the distance between them. An important idea for bonding.
$\begin{aligned} \Delta H_{r x n}^{\circ}= & \Sigma n_{p} \Delta H_{f(\text { products })}^{\circ} \\ & -\Sigma n_{r} \Delta H_{f(\text { reactants })}^{\circ} \end{aligned}$	A "pen and paper" way to calculate the change in enthalpy using a standard enthalpy of formation values from Thermodynamic Data.
$\begin{aligned} \Delta H_{r x n}^{\circ}= & \left(H_{\text {bonds broken }}\right) \\ & -\left(H_{\text {bonds formed }}\right) \end{aligned}$	Another "pen and paper" way to calculate the change in enthalpy, using the Average Bond Enthalpies table. Bond breaking is endothermic, bond formation is exothermic, apply the correct sign.
$\Delta S_{\text {universe }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}$	The total disorder of the universe is the sum of the disorder of the system and surroundings. Disorder drives many chemical processes and can have positive or negative signs.
$\Delta S_{r x n}^{\circ}=\Sigma n_{p} S_{(\text {products })}^{\circ}-\Sigma n_{r} \Delta S_{(\text {reactants })}^{\circ}$	A "pen and paper" way to calculate the change in disorder using absolute

	disorder values from Thermodynamic Data.
$\Delta G=\Delta H-T \Delta S$	The change in Gibbs free energy can be found from the change in enthalpy and entropy. A negative value for a process indicates a release of energy, and is considered to be spontaneous (doesn't require any energy input to occur).
$\Delta G_{r x n}^{\circ}=\Sigma n_{p} \Delta G_{f(p r o d u c t s)}^{\circ}$	$-\Sigma n_{r} \Delta G_{f(r e a c t a n t s)}^{\circ}$
$\Delta G=\Delta G^{\circ}+R T \ln (Q)$	A "pen and paper" way to calculate the change in Gibbs free energy using standard free energy of formation values from Thermodynamic Data.
$\Delta G^{\circ}=-R T \ln (K)$	Used when not at equilibrium or not at standard conditions.
$I=\frac{q}{t}$	Used when at equilibrium ($\Delta G=0)$.
$\Delta G^{\circ}=-n F E^{\circ}$	The maximum cell potential (E $)$ is related to the free energy difference between reactants and products in an electrochemical cell. When cell potential is positive, ΔG is negative and spontaneous (galvanic cell). If cell potential is negative, ΔG is positive and non-spontaneous (electrolytic cell, energy must be added for electrons to flow).
	Current is charge per unit time, typically coulombs/ second.

Periodicity and Bonding

formal charge $=\left(\# v e^{-}\right)-\left(\right.$assigned $\left.e^{-}\right)$	Nonbonding electrons are assigned to their atom. Bonding electrons are divided equally between their atoms.
$E=h v$	Used to calculate the energy of a photon. Energy is equal to Plank's constant $\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)$ times velocity.
$c=\lambda v$	The speed of light $\left(3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}\right)$ is equal to the frequency of the photon times the velocity of the photon.
Ionization Energy	Energy needed to ionize an atom by removing an electron.
Electronegativity	How well an atom attracts electrons in a shared bond. "Sexiness"

Effective Nuclear Charge Increases

Shielding Effect Constant

Reference Materials

Polyatomic lons

Ion	Name	Ion	Name
$\mathrm{H}_{3} \mathrm{O}^{+}$	hydronium	$\mathrm{CrO}_{4}{ }^{2-}$	chromate
$\mathrm{Hg}_{2}{ }^{2+}$	dimercury (I)	$\mathrm{Cr}_{2} \mathrm{O}^{2-}$	dichromate
$\mathrm{NH}_{4}{ }^{+}$	ammonium	$\mathrm{MnO}_{4}{ }^{-}$	permanganate
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$		$\mathrm{NO}_{2}{ }^{-}$	nitrite
$\mathrm{CH}_{3} \mathrm{COO}^{-}$		$\mathrm{NO}_{3}{ }^{-}$	nitrate
		$\mathrm{O}_{2}{ }^{2-}$	peroxide
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	oxalate	OH^{-}	hydroxide
$\mathrm{CO}_{3}{ }^{2-}$	carbonate	CN^{-}	cyanide
$\mathrm{HCO}_{3}{ }^{-}$	hydrogen (bi)carbonate	SCN^{-}	thiocyanate
$\mathrm{PO}_{4}{ }^{3-}$	phosphate	$\mathrm{SO}_{3}{ }^{2-}$	sulfite
ClO^{-}	hypochlorite	$\mathrm{SO}_{4}{ }^{2-}$	sulfate
$\mathrm{ClO}_{2}{ }^{-}$	chlorite	$\mathrm{HSO}_{4}{ }^{-}$	hydrogen sulfate
$\mathrm{ClO}_{3}{ }^{-}$	chlorate	$\mathrm{S}_{2}{ }_{3}{ }^{2-}$	thiosulfate
ClO_{4}^{-}	perchlorate		

Simple Solubility Rules

- Most nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$salts are soluble.
- Most salts containing the alkali metal (group 1) ions ($\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cs}^{+}, \mathrm{Rb}^{+}$) and the ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$ion are soluble.
- Most chloride, bromide and iodide salts are soluble. Exceptions are salts containing the ions $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, and Hg^{2+}.
- Most sulfate salts are soluble. Notable exceptions are $\mathrm{BaSO}_{4}, \mathrm{PbSO}_{4}, \mathrm{HgSO}_{4}$ and CaSO_{4}.
- Most hydroxide salts are only slightly soluble. The important soluble hydroxides are NaOH and KOH . The hydroxides of barium, strontium and calcium are marginally soluble.
- Most sulfide (S^{2-}), carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$, chromate $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$, and phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ salts are only slightly soluble.

Solubility Product Constants ($\mathrm{K}_{\text {sp }}$) at $25^{\circ} \mathrm{C}$

Halides	$\mathrm{K}_{\text {sp }}$	Sulfates	$\mathrm{K}_{\text {sp }}$	Hydroxides	$\mathrm{K}_{\text {sp }}$
AgCl	1.8×10^{-10}	PbSO_{4}	6.3×10^{-7}	$\mathrm{Al}(\mathrm{OH})_{3}$	3.0×10^{-34}
AgBr	5.0×10^{-13}	BaSO_{4}	1.1×10^{-10}	$\mathrm{Zn}(\mathrm{OH})_{2}$	3.0×10^{-16}
AgI	8.3×10^{-17}	CaSO_{4}	2.4×10^{-5}	$\mathrm{Ca}(\mathrm{OH})_{2}$	6.5×10^{-6}
PbCl_{2}	1.7×10^{-5}	Sulfides	$\mathrm{K}_{\text {sp }}$	$\mathrm{Mg}(\mathrm{OH})_{2}$	7.1×10^{-12}
PbBr_{2}	2.1×10^{-6}	NiS	4.0×10^{-20}	$\mathrm{Fe}(\mathrm{OH})_{2}$	7.9×10^{-16}
Pbl_{2}	7.9×10^{-9}	CuS	8.0×10^{-37}	Carbonates	$\mathrm{K}_{\text {sp }}$
PbFF_{2}	3.6×10^{-8}	Ag 2 S	8.0×10^{-51}	CaCO_{3}	4.5×10^{-9}
CaF_{2}	3.9×10^{-11}	ZnS	3.0×10^{-23}	SrCO_{3}	9.3×10^{-10}
$\mathrm{Chromates}^{\mathrm{Kr}}$	K sp	FeS	8.0×10^{-19}	ZnCO_{3}	1.0×10^{-10}
PbCrO_{4}	1.8×10^{-14}	CdS	1.0×10^{-27}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	8.15×10^{-12}

$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	1.2×10^{-12}	PbS	3.0×10^{-28}	BaCO_{3}	5.0×10^{-9}

Solubility Guidelines for Aqueous Solutions

Ions that form Soluble Compounds	Exceptions	lons that form Insoluble Compounds	Exceptions
Group 1 ions (Li^{+}, Na^{+}, etc.)		Carbonate ($\mathrm{CO}_{3}{ }^{2-}$)	When combined with group 1 ions or ammonium
Ammonium ($\mathrm{NH}_{4}{ }^{+}$)		Chromate ($\mathrm{CrO}_{4}{ }^{2-}$)	When combined with group 1 ions, $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$, or ammonium
Nitrate ($\mathrm{NO}_{3}{ }^{-}$)		Phosphate ($\mathrm{PO}_{4}{ }^{3-}$)	When combined with group 1 ions or ammonium
Acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right.$ or $\mathrm{CH}_{3} \mathrm{COO}^{-}$)		Sulfide (S^{2-})	When combined with group 1 ions or ammonium
Hydrogen carbonate $\left(\mathrm{HCO}_{3}{ }^{-}\right)$		Hydroxide $\left(\mathrm{OH}^{-}\right)$	When combined with group 1 ions, $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$, or ammonium
Chlorate ($\mathrm{ClO}_{3}{ }^{-}$)			
Perchlorate ($\mathrm{ClO}_{4}{ }^{-}$)			
Halides ($\mathrm{F}^{-}, \mathrm{Cl}^{-}$, etc.)	When combined with $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, or $\mathrm{Hg}_{2}{ }^{2+}$		
Sulfates ($\mathrm{SO}_{4}{ }^{2-}$)	When combined with $\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, Ba^{2+}, and Pb^{2+}		

Strong Acids and Bases

Acids: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$ (first H^{+}only), $\mathrm{HClO}_{3}, \mathrm{HClO}_{4}$
Bases: Group 1 hydroxides ($\mathrm{NaOH}, \mathrm{KOH}$, etc.), $\mathrm{Ca}(\mathrm{OH})_{2}{ }^{*}, \mathrm{Ba}(\mathrm{OH})_{2}{ }^{*}, \mathrm{Sr}(\mathrm{OH})_{2}{ }^{\star}$ (*considered strong at concentrations below 0.10 M)
K_{a} and K_{b} Values for Some Common Weak Acids and Weak Bases

Acid	Formula	Ka	Base	Formula	K ${ }_{\text {b }}$
Hydrogen sulfate	$\mathrm{HSO}_{4}{ }^{-}$	1.2×10^{-2}	Ammonia	NH_{3}	1.8×10^{-5}
Chlorous acid	HClO_{2}	1.2×10^{-2}	Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	4.4×10^{-4}
Hydrofluoric acid	HF	7.2×10^{-4}	Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	5.6×10^{-4}
Nitrous acid	HNO_{2}	4.0×10^{-4}	Hydroxylamine	OHNH_{2}	1.1×10^{-8}
Lactic acid	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1.4×10^{-4}	Hydrazine	$\mathrm{H}_{2} \mathrm{NNH}_{2}$	3.0×10^{-6}
Acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	1.8×10^{-5}	Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	3.8×10^{-10}
Propanoic acid	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$	1.3×10^{-5}	Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.7×10^{-9}
Hypochlorou s acid	HOCI	3.5×10^{-8}			
Hypobromo us acid	HOBr	2×10^{-9}			
Hypoiodous acid	HOI	2×10^{-11}			
Hydrocyanic acid	HCN	6.2×10^{-10}			

Van der Waals Constants

Gas	a	b
He	0.0341	0.0237
Ne	0.211	0.0171
Ar	1.35	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0511
H_{2}	0.244	0.0266
$\mathrm{~N}_{2}$	1.39	0.0391
O_{2}	1.36	0.0318
Cl_{2}	6.49	0.0562
CO_{2}	3.59	0.0427
CH_{4}	2.25	0.0428
NH_{3}	4.17	0.0371
$\mathrm{H}_{2} \mathrm{O}$	5.46	0.0305

Partial Pressure of Water Vapor for Select Temperatures

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Pressure (mmHg)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Pressure (mmHg)
15	12.8	26	25.2
16	13.6	27	26.7
17	14.5	28	28.3
18	15.5	29	30.0
19	16.5	30	31.8
20	17.5	31	33.7
21	18.7	32	35.7
22	19.8	33	37.7
23	21.1	34	39.9
24	22.4	35	42.2
25	23.8	36	44.6

Rules to Determine Oxidation States

The oxidation state of \ldots	Summary	Examples
An atom in elemental form is zero	Element $=0$	$\mathrm{Na}(\mathrm{s}), \mathrm{O}_{2}(\mathrm{~g}), \mathrm{O}_{3}(\mathrm{~g}), \mathrm{Hg}(\mathrm{l})$
A monatomic ion is the same as its charge	Monatomic ion = charge of ion	$\mathrm{Na}^{+}, \mathrm{Cl}^{-}$
Fluorine is -1 in its compounds	Fluorine $=-1$	$\mathrm{HF}^{2} \mathrm{PF}_{3}$
Oxygen is -2 in its compounds (except peroxides, $\mathrm{O}_{2}{ }^{2-}$, in which oxygen is -1$)$	Oxygen $=-2$	$\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$
Hydrogen is +1 in covalent compounds	Hydrogen $=+1$	$\mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}, \mathrm{NH}_{3}$
Remember that the sum of oxidation states must equal the charge.		

Standard Reduction Potentials

Half-Reaction	\mathscr{B}° (V)	Half-Reaction	$\mathscr{E}^{\circ}(\mathrm{V})$
$\mathrm{F}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}$	2.87	$\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$	0.40
$\mathrm{Ag}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}^{+}$	1.99	$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$	0.34
$\mathrm{Co}^{3-}+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2-}$	1.82	$\mathrm{Hg}_{2} \mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Hg}+2 \mathrm{Cl}^{-}$	0.27
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	1.78	$\mathrm{AgCl}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}+\mathrm{Cl}^{-}$	0.22
$\mathrm{Ce}^{4+}+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}$	1.70	$\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$	0.20
$\mathrm{PbO}_{2}+4 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{e}^{-} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$	1.69	$\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}$	0.16
$\mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1.68		
$2 \mathrm{e}^{-}+2 \mathrm{H}^{+}+1 \mathrm{O}_{4}^{-} \rightarrow \mathrm{IO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$	1.60	$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$	0.00
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	1.51	$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}$	-0.036
$\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}$	1.50	$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}$	-0.13
$\mathrm{PbO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$	1.46	$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}$	-0.14
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}$	1.36	$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}$	-0.23
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$	1.33	$\mathrm{PbSO}_{4}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}+\mathrm{SO}_{4}^{2-}$	-0.35
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	1.23	$\mathrm{Cd}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}$	-0.40
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$	1.21	$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}$	-0.44
$1 \mathrm{O}_{3}^{-}+6 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \frac{1}{2} \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	1.20	$\mathrm{Cr}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Cr}^{2+}$	-0.50
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}$	1.09	$\mathrm{Cr}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}$	-0.73
$\mathrm{VO}_{2}^{+}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{VO}^{2+}+\mathrm{H}_{2} \mathrm{O}$	1.00	$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$	-0.76
$\mathrm{AuCl}_{4}^{-}+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}+4 \mathrm{Cl}^{-}$	0.99	$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$	-0.83
$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$	0.96	$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}$	-1.18
$\mathrm{ClO}_{2}+\mathrm{e}^{-} \rightarrow \mathrm{ClO}_{2}^{-}$	0.954	$\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$	-1.66
$2 \mathrm{Hg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Hg}_{2}^{2+}$	0.91	$\mathrm{H}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}^{-}$	-2.23
$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$	0.80	$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}$	-2.37
$\mathrm{Hg}_{2}^{2+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Hg}$	0.80	$\mathrm{La}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{La}$	-2.37
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$	0.77	$\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$	-2.71
$\mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$	0.68	$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}$	-2.76
$\mathrm{MnO}_{4}^{-}+\mathrm{e}^{-} \rightarrow \mathrm{MnO}_{4}^{2-}$	0.56	$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ba}$	-2.90
$\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightarrow 21^{-}$	0.54	$\mathrm{K}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{K}$	-2.92
$\mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}$	0.52	$\mathrm{Li}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Li}$	-3.05

Calculating Voltage from Standard Reduction Potential

Locate the two relevant half reactions. The one with the most positive reduction potential will run as written as a reduction. The other half reaction is "flipped" (sign and direction) and runs as oxidation. Multiply each half reaction by a whole number to ensure the number of electrons produced and consumed on both sides of the arrow are equal. Do NOT multiply the voltages by these factors, just sum them together.

Average Bond Enthalpies

Single Bonds (kJ/mol)							
C-H	413	N-H	391	O-H	463	F-F	155
C-C	348	N-N	163	O-O	146		
$\mathrm{C}-\mathrm{N}$	293	$\mathrm{N}-\mathrm{O}$	201	O-F	190	Cl-F	253
C-O	358	N-F	272	$\mathrm{O}-\mathrm{Cl}$	203	$\mathrm{Cl}-\mathrm{Cl}$	242
C-F	485	$\mathrm{N}-\mathrm{Cl}$	200	O-I	234		
$\mathrm{C}-\mathrm{Cl}$	328	$\mathrm{N}-\mathrm{Br}$	243			$\mathrm{Br}-\mathrm{F}$	237
$\mathrm{C}-\mathrm{Br}$	276					$\mathrm{Br}-\mathrm{Cl}$	218
C-I	240	H-H	436	S-H	339	$\mathrm{Br}-\mathrm{Br}$	193
C-S	259	H-F	567	S-F	327		
		$\mathrm{H}-\mathrm{Cl}$	431	S-Cl	253	$\mathrm{I}-\mathrm{Cl}$	208
Si-H	323	$\mathrm{H}-\mathrm{Br}$	366	S-Br	218	$1-\mathrm{Br}$	175
$\mathrm{Si}-\mathrm{Si}$	226	H-I	299	S-S	266	-1	151
Si-C	301			S-N	464		
Si-O	368						
Multiple Bonds ($\mathrm{kJ} / \mathrm{mol}$)							
$\mathrm{C}=\mathrm{C}$	614	$\mathrm{N}=\mathrm{N}$	418	$\mathrm{O}=0$	495		
$\mathrm{C} \equiv \mathrm{C}$	839	$\mathrm{N}=\mathrm{N}$	941				
$\mathrm{C}=\mathrm{N}$	615	$\mathrm{N}=\mathrm{O}$	607	S=O	523		
$\mathrm{C} \equiv \mathrm{N}$	891			$\mathrm{S}=\mathrm{S}$	418		
$\mathrm{C}=0$	799						

```
\(\mathrm{C} \equiv \mathrm{O} \quad 1072\)
```

Table of Thermodynamic Data
Click here.
Specific Heats

Substance	$\mathrm{J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$	$\mathrm{cal} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$
Water (liquid)	4.18	1.00
Water (gas)	1.9	0.45
Water (solid)	2.1	0.50
Ethanol	2.4	0.58
Chloroform	0.96	0.23
Aluminum	0.90	0.21
Iron	0.46	0.11
Silver	0.24	0.057
Mercury	0.14	0.033

Heats of Physical Change

Substance	$\Delta \mathrm{H}_{\text {fus }}(\mathrm{kJ} / \mathrm{mol})$	$\Delta \mathrm{H}_{\text {vap }}(\mathrm{kJ} / \mathrm{mol})$
Ammonia $\left(\mathrm{NH}_{3}\right)$	5.66	23.3
Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)$	4.93	38.6
Hydrogen $\left(\mathrm{H}_{2}\right)$	0.12	0.90
Methanol $\left(\mathrm{CH}_{4} \mathrm{O}\right)$	3.22	35.2
Oxygen $\left(\mathrm{O}_{2}\right)$	0.44	6.82

Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$	6.01	40.7

